An Argonne team developing materials for solid-state batteries took an unexpected detour to investigate tiny short-circuits known as soft-shorts. Their insights will benefit battery researchers around the world.
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have shed important new light on what the early signs of battery failure look like. Their study — which relates to a condition called soft-shorts — provides the research community with valuable knowledge and methods to design better electric vehicle (EV) batteries.
The Argonne team’s research focused on all-solid batteries with anodes (negative electrodes) made of lithium metal. Many view such devices as the “holy grail” of battery technologies. Why? Because lithium metal can store a large amount of charge in a small space. That means it can enable much longer electric vehicle driving ranges than traditional lithium-ion batteries made with graphite anodes.
However, lithium metal presents operational challenges because it can be highly reactive with the liquid electrolytes in traditional batteries. Electrolytes are materials that move charged particles known as ions between a battery’s two electrodes, converting stored energy into electricity.
“With typical battery testing in the lab, researchers may only measure voltage every minute or so. During that time, you could have missed the formation and death of thousands of soft-shorts. They’re like little ghosts that are destroying your battery without you knowing it.” — Michael Counihan, Argonne postdoctoral appointeeAs a normally functioning battery discharges, ions flow from the anode through the electrolyte to the cathode (positive electrode). At the same time, electrons flow from the anode to an external device — like a phone or EV motor — and then return to the cathode. The electron flow is what powers the device. When a battery is charging, these flows are reversed. The use of lithium metal tends to disrupt this process. During charging, lithium filaments can grow off the anode and penetrate the electrolyte. If these growths become large enough and extend all the way to the cathode, they create a permanent “wire” between the electrodes. Eventually, all the electrons in the battery flow through this wire from one electrode to the other without exiting the battery to power a device. This process also stops the flow of ions between the electrodes. “This is called an internal short-circuit,” said Michael Counihan, an Argonne postdoctoral appointee and the lead researcher on the team. “The battery has failed, and the electrons are no longer powering your device. Putting lithium metal anodes in solid-state batteries — in other words, batteries with solid electrolytes — can potentially reduce filament-related challenges while still retaining lithium’s benefits.