In 1874, Jules Verne wrote in his novel “The Mysterious Island”:
“I believe that one day water will be a fuel, that the hydrogen and oxygen which constitute it, used alone or together, will provide an inexhaustible source of energy and light, with an intensity which coal cannot; since coal reserves will be exhausted, we shall be heated by water. Water will be the coal of the future.”
In the 1970s, with the oil crisis, there was already talk of the hydrogen economy, which was predicted to be as profitable as traditional fuels. However, this shift did not happen and we continue to be highly dependent on fossil fuels, well into the 21st century. In the 1970s the market alone was not able to make the change. Now it is clear that a public push is needed to make hydrogen a key player in the energy transition. The European Union thinks so too.
Now it has been announced that the governments of Spain, Portugal and France are to build the so-called BarMar—a gas pipeline running from Barcelona to Marseille.
This is a substitute of the initial project, MidCat, a gas pipeline intended to go through France to provide northern countries with gas. France refused to allow this project to go ahead and, in agreement with Spain and Portugal, traded it for BarMar. This pipeline will initially transport fossil gas from the two Iberian countries into France but then switch to hydrogen when there is sufficient production and demand. It will take four to five years to build.
Hydrogen also consumes energy
For a few years now, the possibilities of hydrogen have been revolutionising the world of energy. In its favour, it is a non-polluting gas, as it only emits water when it is burned. It has been identified as a key player in the fight against climate change because it has the potential to help realise the ambition of cutting CO₂ emissions.
However, it is not a naturally occurring source of energy—unlike oil, gas or coal, it needs to be created before it can be used by consumers. Like electricity, it is an energy carrier—both are ways of transporting, storing and generating energy. Producing hydrogen currently consumes more energy than is returned by burning it.
Hydrogen can be obtained in several ways and falls into different categories:
- Grey hydrogen accounts for most of the hydrogen currently produced and is generated by reacting natural gas with water vapour. The downside of grey hydrogen is that producing it emits CO₂ into the atmosphere, making it little use in the quest for clean energy.
- Blue hydrogen is obtained like grey hydrogen but the CO₂ produced is then captured.
- Green hydrogen or low-emission hydrogen is obtained by electrolysis of water, i.e. by breaking down the water molecule with renewable electricity.