Next generation semiconductors: Diamond device shows highest breakdown voltage
To reach the world’s goal of carbon neutrality by 2050, there must be a fundamental change in electronic materials to create a more reliable and resilient electricity grid. A diamond might be a girl’s best friend, but it might also be the solution needed to sustain the electrification of society needed to reach carbon neutrality in the next 30 years.
Researchers at the University of Illinois Urbana-Champaign have developed a semiconductor device, made using diamond, that has the highest breakdown voltage and lowest leakage current compared to previously reported diamond devices. Such a device will enable more efficient technologies needed as the world transitions to renewable energies.
It is estimated that currently, 50% of the world’s electricity is controlled by power devices, and in less than a decade, it is expected that that number will increase to 80%, while simultaneously, the demand for electricity will increase by 50% by 2050.
According to a new report from the National Academies of Sciences, Engineering, and Medicine, “Perhaps the single greatest technological danger to a successful energy transition is the risk that the nation fails to site, modernize, and build out the electrical grid. Without increased transmission capacity, renewables deployment would be delayed, and the net result could be at least a temporary increase in fossil fuel emissions, preventing the nation from achieving its emission reduction goals.”
“To meet those electricity demands and modernize the electrical grid, it’s very important that we move away from conventional materials, like silicon, to the new materials that we are seeing being adopted today like silicon carbide and the next generation of semiconductors—ultra-wide bandgap materials—such as aluminum nitride, diamond and related compounds,” says electrical and computer engineering professor Can Bayram, who led this research, along with graduate student Zhuoran Han. The results of this work were published in the journal IEEE Electron Device Letters.
Most semiconductors are built using silicon and thus far, have met society’s electrical needs. But as Bayram points out, “We want to make sure that we have enough resources for everyone, while our needs are evolving. Right now, we are using more and more bandwidth, we are creating more data (that also comes with more storage), and we are using more power, more electricity and more energy in general. The question is: is there a way we can make all of this more efficient, rather than generating more energy and building more power plants?”