OpenAI chief says age of giant AI models is ending; a GPU crisis could be one reason why
The era of ever-larger artificial intelligence models is coming to an end, according to OpenAI CEO Sam Altman, as cost constraints and diminishing returns curb the relentless scaling that has defined progress in the field.
Speaking at an MIT event last week, Altman suggested that further progress would not come from “giant, giant models.” According to a recent Wired report, he said, “I think we’re at the end of the era where it’s going to be these, like, giant, giant models. We’ll make them better in other ways.”
Though Mr. Altman did not cite it directly, one major driver of the pivot from “scaling is all you need” is the exorbitant and unsustainable expense of training and running the powerful graphics processes needed for large language models (LLMs). ChatGPT, for instance, reportedly required more than 10,000 GPUs to train, and demands even more resources to continually operate.
Nvidia dominates the GPU market, with about 88% market share, according to John Peddie Research. Nvidia’s latest H100 GPUs, designed specifically for AI and high-performance computing (HPC),can cost as much as $30,603 per unit — and even more on eBay.
Training a state-of-the-art LLM can require hundreds of millions of dollars’ worth of computing, said Ronen Dar, cofounder and chief technology officer of Run AI, a compute orchestration platform that speeds up data science initiatives by pooling GPUs.
As costs have skyrocketed while benefits have leveled off, the economics of scale have turned against ever-larger models. Progress will instead come from improving model architectures, enhancing data efficiency, and advancing algorithmic techniques beyond copy-paste scale. The era of unlimited data, computing and model size that remade AI over the past decade is finally drawing to a close.